Hubble Unveils Galactic ‘Cotton Candy’ in the Large Magellanic Cloud

Comments · 18 Views

Hubble Space Telescope’s latest image reveals vibrant filaments of gas and dust in the Large Magellanic Cloud, showing star-forming regions in exquisite detail using ultraviolet and infrared filters.

Hubble's latest view reveals a jewel-like cloudscape of gas and dust in the Large Magellanic Cloud (LMC), a dwarf galaxy about 160,000 light-years from Earth. This Milky Way companion is our galaxy's largest satellite, and its active stellar nurseries glow in intricate pastel filaments. The wispy tendrils in the image have been likened to brightly colored “cotton candy” because of their pink, blue and green hues. Astronomers use scenes like this to probe star formation and dust. By tracing where dust hides newborn stars, Hubble's sharp view reveals the structure of stellar nurseries in this nearby galaxy.

Galactic Cotton Candy: Nebula and Stars

According to NASA's official site, this rich nebula was imaged with Hubble's Wide Field Camera 3 (WFC3) using five different filters, including ultraviolet and infrared bands. Each filter isolates a range of wavelengths, so the composite image highlights different components of the cloud. Bright regions mark hot young stars lighting up gas, while darker filaments are cooler dust clouds blocking light.

In effect, the image maps the interplay of stars and gas: astronomers see how massive stars sculpt the nebula, triggering new generations of star birth in the gas and dust. The vivid patterns of emission and absorption trace the LMC's galactic structure, helping researchers study how its interstellar medium fuels star formation.

Beyond the Visible: Filters and False Color

Hubble's technicians assigned colors to the filtered data to make the invisible visible. Visible-light filters use their natural hues, while ultraviolet light is shown as blue/violet and infrared as red. In this five-filter image, for example, ultraviolet-dominated spots and infrared-bright regions are translated into shades of blue, purple and red. This color scheme “closely represents reality while adding new information” from parts of the spectrum our eyes cannot see. In practice, it means the image remains scientifically faithful but emphasizes features that humans would otherwise miss.

The final result is both a tool and a portrait: astronomers gain insight into the composition and temperature of the gas and dust (for example, hydrogen-rich regions glowing pink), while the public enjoys a stunning, otherworldly view of a neighboring galaxy.

Source: Gadgets 360

Comments